Endotoxin Exposure, Immune Markers, and Pulmonary Function in Agricultural Workers in Colorado and Nebraska

J. Burch (U South Carolina), N. Koehncke (U Saskatchewan), P. Siegel (NIOSH) S. Von Essen (U Nebraska Medical Center)

January 17, 2009
Background: Clinical and Epidemiological Studies

- Reynolds, Donham, Thorne, Merchant, et al: occup. asthma 20%, chronic bronchitis 25%, ODTS 33% (Swine, Poultry, Dairy)

Suggested OELs for Swine, Poultry environments

- Dust 2.5 mg/m3,
- Endotoxin 1,000 EU/m3,
- Ammonia 7 ppm)
Endotoxins

- Lipopolysaccharide-protein complexes
- Potency varies among G- bacteria species
- Cell activation (neutrophils, macrophages)
- Mediator release (interleukins)
- Complement activation
- Decrements in PFTs, ODTS, HP
Endotoxins

- Lipid A portion – Pathogen Associated Molecular Pattern (germ line encoded receptors)
- Role in immune system modulation and asthma –
 - Adaptation or down-regulation of response
- Genetic risk factors (CD14, TLR4)
 - LeVan and Von Essen (2005) CD14 and PFT decrements
Objectives

1) Characterize worker exposure to endotoxin-containing agricultural aerosols;

2) Evaluate respiratory outcomes including symptoms, cross shift changes in pulmonary function, (PFT) and cellular/immune markers (cytokines);

3) Survey genetic markers related to lung disease and endotoxin etiology (TLR4 gene mutations, and polymorphisms of IL1-RN, and TNF-alpha);

4) Explore whether endotoxin assay or GC/MS is best predictor of biomarkers, PFTs, Sx;

5) Explore whether cellular/immune responses and PFT differ among those with different genetic status.
Recruitment

- N = 250 Workers,
- > 18 years
- Corn Growers Association
- Grain Handlers Association
- Colorado Livestock Association
- Nebraska – Grain Handlers and Farmers
Methods

- Pre-Work Shift
 - Exposure/Respiratory Health Questionnaire
 - Based on ATS and Organic Dust (Rylander, Donham)
 - Pulmonary Function Test
 - (Spirometrics 2500, Puritan Bennett Renaissance, NHANES III)
 - Blood Sample – Genetics (TLR4 gene mutations, and polymorphisms of IL1-RN, and TNF-alpha)

- Exposure Measurement
 - IOM Personal Dust Sample
 - rFC Assay
 - GC/MS

- Post-Work Shift
 - Respiratory Questionnaire
 - Pulmonary Function Test
 - Nasal Lavage (Cytokines)
Organic Dust/Endotoxin Sampling

- IOM Personal Sampler
- Gravimetric Analysis
- rFC Endotoxin Assay
- GC/EI-MS Endotoxin Analysis (HP 5890 Series II Plus GC, HP5972 Mass Selective Detector)

Figure 1: Schematic drawing of the endotoxin detection mechanisms in the LAL system and the rFC system.
Results - Demographics

<table>
<thead>
<tr>
<th></th>
<th>Grain Elevator N = 76</th>
<th>Cattle Feedlot N = 71</th>
<th>Dairy N = 18</th>
<th>Farm, Corn N = 9</th>
<th>Total N = 174</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>41</td>
<td>34</td>
<td>30</td>
<td>38</td>
<td>37</td>
</tr>
<tr>
<td>Years Work</td>
<td>12.7</td>
<td>20.4</td>
<td>9.9</td>
<td>23.4</td>
<td>16.1</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>16%</td>
<td>24%</td>
<td>89%</td>
<td>33%</td>
<td>28%</td>
</tr>
<tr>
<td>Current Smokers</td>
<td>29%</td>
<td>22%</td>
<td>33%</td>
<td>0%</td>
<td>25%</td>
</tr>
</tbody>
</table>

- **98.8% Male**
Frequency of Tasks by Operation

- Truck harvest
- Combine harvest
- Loading/unloading
- Running legs (in elevator)
- Housekeeping/cleaning
- Mechanical maintenance
- Feeding livestock

<table>
<thead>
<tr>
<th>Task</th>
<th>Dairy</th>
<th>Feedlot</th>
<th>Grain Elevator</th>
<th>Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of response (%)</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
</tr>
</tbody>
</table>
Inhalable Dust by Operation

Dairy
Cattle feedlot
Grain elevator
Farm

Dust concentration (mg/m3)

0.1
1
10
100

Dairy
Cattle feedlot
Grain elevator
Farm
Inhalable Endotoxin by Operation

Endotoxin concentration (EU/m3)

<table>
<thead>
<tr>
<th>Operation</th>
<th>1</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain Elevator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inhalable Dust Exposure by Task

<table>
<thead>
<tr>
<th>Task</th>
<th>Dust concentration (mg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage</td>
<td>0.1</td>
</tr>
<tr>
<td>Sampling</td>
<td>1</td>
</tr>
<tr>
<td>Milling</td>
<td>10</td>
</tr>
<tr>
<td>Bagging feed</td>
<td>100</td>
</tr>
<tr>
<td>Feeding livestock</td>
<td>1000</td>
</tr>
<tr>
<td>Supervising</td>
<td>1000</td>
</tr>
<tr>
<td>Other</td>
<td>1000</td>
</tr>
</tbody>
</table>
Inhalable Endotoxin by Task

[Bar chart showing distribution of inhalable endotoxin concentration by task, with categories including Storage, Mixing, Milling, Feeding livestock, Weighing, Sampling, Harvesting, and other. The chart includes a log scale on the y-axis and task categories on the x-axis.]
Exposures –
Geometric means (geometric standard deviation)
Risk Factors for High Exposures
(Multiple Linear Regression)

- **Dust**
 - Grain elevator operator (+), hours working in feed storage (+), hours running legs in grain elevator (+), and hours supervising (-).

- **Endotoxin**
 - Grain elevator operator (-), farm worker (-), hours in feed storage (+), hours running legs in grain elevator (+), hours supervising (-), and years in the job (-).
Variability in 3 OHFA by Dust Type

Dairy (n = 17)

Feedlot (n = 48)

Grain Elevator (n = 58)

Farm (n = 11)
Correlations: GC/MS and rFC Assay

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>R</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>134</td>
<td>0.4306</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Dairy</td>
<td>17</td>
<td>0.5332</td>
<td>0.0275</td>
</tr>
<tr>
<td>Cattle Feedlot</td>
<td>48</td>
<td>0.7155</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Grain Elevator</td>
<td>58</td>
<td>0.1145</td>
<td>0.3922</td>
</tr>
<tr>
<td>Corn Farm</td>
<td>11</td>
<td>0.3288</td>
<td>0.3235</td>
</tr>
</tbody>
</table>
Multiple Regressions: rFC Assay and 3-OHFAs

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>3-OHFA Combination</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>134</td>
<td>14, 8, 10</td>
<td>0.3314</td>
</tr>
<tr>
<td>Dairy</td>
<td>17</td>
<td>17, 10</td>
<td>0.6527</td>
</tr>
<tr>
<td>Cattle Feedlot</td>
<td>48</td>
<td>14, 18, 13</td>
<td>0.7329</td>
</tr>
<tr>
<td>Grain Elevator</td>
<td>58</td>
<td>9, 10, 17</td>
<td>0.2480</td>
</tr>
<tr>
<td>Corn Farm</td>
<td>11</td>
<td>None</td>
<td>-</td>
</tr>
</tbody>
</table>
Correlations:
Odd and Even Length 3-OHFAs

<table>
<thead>
<tr>
<th>Location</th>
<th>Endotoxin activity vs. 3-OHFAs</th>
<th>Even vs. Odd 3-OHFAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy</td>
<td>Even</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Odd</td>
<td>0.60</td>
</tr>
<tr>
<td>Cattle Feedlot</td>
<td>Even</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Odd</td>
<td>0.70</td>
</tr>
<tr>
<td>Grain Elevator</td>
<td>Even</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Odd</td>
<td>-0.24</td>
</tr>
<tr>
<td>Corn Farm</td>
<td>Even</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>Odd</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Mean Inflammation Marker Levels (N=125)

† - p-value for characteristic as a continuous variable in parentheses. a, b - p≤0.05, p≤0.01 vs. former tobacco users, respectively. c - p≤0.05 vs. current cigarette / cigar smoker. PMN - polymorphonuclear neutrophils. MPO - myeloperoxidase. IL interleukin. ECP - eosinophilic cation protein.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>PMN (cells/ml)</th>
<th>MPO (ng/ml)</th>
<th>IL-8 (pg/ml)</th>
<th>Albumin (ng/ml)</th>
<th>ECP (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-24 years</td>
<td>(0.62)†</td>
<td>(0.05)</td>
<td>(0.19)</td>
<td>(0.39)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>(n=37)</td>
<td>446</td>
<td>30</td>
<td>245</td>
<td>6,634</td>
<td>0.99</td>
</tr>
<tr>
<td>25-40 years</td>
<td>545</td>
<td>40</td>
<td>181</td>
<td>4,447</td>
<td>1.07</td>
</tr>
<tr>
<td>(n=57)</td>
<td>665</td>
<td>55</td>
<td>200</td>
<td>6,003</td>
<td>1.16</td>
</tr>
<tr>
<td>41-72 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n=31)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Facility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrainElevator</td>
<td>438</td>
<td>33</td>
<td>154</td>
<td>5,110</td>
<td>0.93</td>
</tr>
<tr>
<td>(n=46)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feedlot</td>
<td>528</td>
<td>50</td>
<td>221<sup>a</sup></td>
<td>5,715</td>
<td>1.11</td>
</tr>
<tr>
<td>(n=55)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy</td>
<td>744</td>
<td>41</td>
<td>245<sup>b</sup></td>
<td>5,385</td>
<td>1.07</td>
</tr>
<tr>
<td>(n=15)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Farm</td>
<td>992</td>
<td>32</td>
<td>390<sup>c</sup></td>
<td>6,048</td>
<td>1.69</td>
</tr>
<tr>
<td>(n=9)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Summary of Immune Marker Results

- Associations with the 3-OHFAs were greater than those observed with endotoxin or inhalable dust exposure.
- Mean PMN, MPO, albumin and ECP levels were two- to three-fold higher among workers in the upper quartile of 3-OHFA exposure compared to the lowest exposure quartile.
- Even chain length 3-OHFAs were most strongly associated with nasal inflammation.
Symptoms with Increase Over Workshift

- Eye Irritation (31%)
- Nose Irritation (99%)
Baseline PFT below Criteria for Obstructive Lung Disease (Gold II, Celli 2003)

- FEV1<80%
- FEV1<95%
- FEV1/FVC<88%
- FEV1/FVC<95%
Mean Cross Shift Change in PFT
(5% increase is normal)
Proportion with Cross Shift Decrease in PFT Exceeding 5% and 10%
Predictors of Baseline PFT
(Correlations and Multiple Linear Regression)

- FVC – Log Endotoxin (EU/m³, pmol/m³) concentration, type of facility, smoking.

- FEV1 – Log Endotoxin concentration (EU/m³, pmol/m³) type of facility, smoking.

- FEV1/FCV – Log Endotoxin (EU/m³, pmol/m³) or Log Dust concentration, type of facility, smoking.

- Correlations ($r = 0.15 – 0.24$) and regressions ($R^2 0.02 – 0.12$) weak in all cases

- C12, C14, C18 3OHFAs best models for FVC, FEV1, FEV1/FVC.
Predictors of Cross Shift Decline in PFT

(Correlations and Multiple Linear Regression)

- FVC – Log Endotoxin (EU/m3, pmol/m3) or Log Dust concentration, smoking.

- FEV1 - Log Endotoxin (EU/m3, pmol/m3) or Log Dust concentration, smoking.

- FEV1/FCV – Log Endotoxin (EU/m3, pmol/m3) or Log Dust concentration, smoking.

- Correlations ($r = 0.15 - 0.24$) and regressions
 - ($R^2 0.02 - 0.12$) weak in all cases

- C12, C14, C18 3OHFAs best models for FVC, FEV1, FEV1/FCV.
Conclusions

- Personal exposures to dust and endotoxin quite variable. Some very high.

- Means exceed current recommended OELs

- Geometric mean dust levels highest among grain elevator operators (4.50 mg/m³) and lowest among farm workers (2.49 mg/m³)

- Geometric mean endotoxin exposure level was highest among feedlot workers (1,093 EU/m³ by rFC).

- Even chain 3OHFA (12, 14, 18) highest in dairy and cattle feedlots.
Conclusions

- 26% of participants had a cross shift drop in FEV1 > 5%. 10% had a drop in FEV1 > 10%.

- 19% had a drop in cross shift drop in FVC exceeding 5%. 8% had FVC decrease > 10%.

- The proportions were largest in farmers, followed by dairy workers, grain handlers, and cattle feedlot workers.
Conclusions

- Smoking, endotoxin/dust exposure, and facility type were significant predictors of symptoms (eye and throat irritation, cough) and pulmonary function (cross shift decrease in FEV1, pre-shift FVC and FEV1).

- 3OHFAs, especially C12, C14, C18 were associated with cross shift changes in FVC and FEV1.

- Even chain 3OHFAs (pg/mg) associated with increased PMN, MPO, Albumin, ECP in nasal lavage (not odd chains).
Conclusions

- Respiratory symptoms were similar among those with and without elevated dust/endotoxin exposures, suggesting development of tolerance from subchronic organic dust exposure.

- Acute endotoxin exposure was an important predictor of change in FEV1, and markers of inflammation.

- These results suggest that workers’ exposed to elevated concentrations of endotoxin-containing dusts are more susceptible to acute inflammatory effects of endotoxin containing dusts, and that extended workplace exposures confer a degree of tolerance, or that sensitive workers who do not adapt leave the industry over time.
Acknowledgements

- Dr. Lennart Larsson
- Dr. Donald Milton
- Dr. Udeni Alwis
- Lonza Inc. – rFC assay
- SKC Inc. – samplers
- CDC NIOSH R01OH007841
- CDC NIOSH 5U50OH008085 (HICAHS)